from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial interpretation [21]:
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(0) = 0
POL(ACTIVATE1(x1)) = 2·x1
POL(TAKE2(x1, x2)) = 2·x2
POL(activate1(x1)) = x1
POL(cons2(x1, x2)) = x2
POL(from1(x1)) = 2 + 2·x1
POL(n__from1(x1)) = 2 + 2·x1
POL(n__s1(x1)) = x1
POL(n__take2(x1, x2)) = 2·x1 + 2·x2
POL(nil) = 0
POL(s1(x1)) = x1
POL(take2(x1, x2)) = 2·x1 + 2·x2
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__s1(X)) -> s1(activate1(X))
from1(X) -> n__from1(X)
take2(0, XS) -> nil
from1(X) -> cons2(X, n__from1(n__s1(X)))
activate1(X) -> X
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
s1(X) -> n__s1(X)
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial interpretation [21]:
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
POL(0) = 0
POL(ACTIVATE1(x1)) = x1
POL(TAKE2(x1, x2)) = 2·x2
POL(activate1(x1)) = x1
POL(cons2(x1, x2)) = 2·x2
POL(from1(x1)) = 0
POL(n__from1(x1)) = 0
POL(n__s1(x1)) = 2 + 2·x1
POL(n__take2(x1, x2)) = 2·x1 + 2·x2
POL(nil) = 0
POL(s1(x1)) = 2 + 2·x1
POL(take2(x1, x2)) = 2·x1 + 2·x2
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__s1(X)) -> s1(activate1(X))
from1(X) -> n__from1(X)
take2(0, XS) -> nil
from1(X) -> cons2(X, n__from1(n__s1(X)))
activate1(X) -> X
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
s1(X) -> n__s1(X)
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
Used ordering: Polynomial interpretation [21]:
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
POL(0) = 0
POL(ACTIVATE1(x1)) = x1
POL(TAKE2(x1, x2)) = 2·x2
POL(activate1(x1)) = x1
POL(cons2(x1, x2)) = x2
POL(from1(x1)) = 0
POL(n__from1(x1)) = 0
POL(n__s1(x1)) = x1
POL(n__take2(x1, x2)) = 2 + x1 + 2·x2
POL(nil) = 0
POL(s1(x1)) = x1
POL(take2(x1, x2)) = 2 + x1 + 2·x2
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__s1(X)) -> s1(activate1(X))
from1(X) -> n__from1(X)
take2(0, XS) -> nil
from1(X) -> cons2(X, n__from1(n__s1(X)))
activate1(X) -> X
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
s1(X) -> n__s1(X)
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
POL(0) = 0
POL(SEL2(x1, x2)) = 2·x1
POL(activate1(x1)) = 0
POL(cons2(x1, x2)) = 0
POL(from1(x1)) = 0
POL(n__from1(x1)) = 0
POL(n__s1(x1)) = 0
POL(n__take2(x1, x2)) = 0
POL(nil) = 0
POL(s1(x1)) = 2 + 2·x1
POL(take2(x1, x2)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X